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While our knowledge of linear stability theory is by now fairly complete, no
full understanding of the turbulent breakdown mechanism has yet been achieved.
However, the past two decades have seen a number of successful attempts to bring
instability theory a little closer to explaining the onset of turbulent behaviour. The
book by Schmid & Henningson does precisely this: starting from classical stability
theory, the authors present mostly recent developments, consider situations with
higher complexity and eventually leave us at the brink of turbulence – as close as one
can get at the time of writing.

Some familiarity with basic fluid dynamics and wave-like phenomena is assumed
and the material is thus primarily intended for graduate students and beyond. As
a fairly up to date account of issues between stability and turbulence, it will help
those coming from any branch of fluid dynamics to quickly gain an overview of the
latest techniques and results. Throughout, a variety of mathematical and numerical
tools is introduced, each illustrated in different situations to show a range of possible
applications. While some chapters serve as reference material, e.g. the final chapter
on transition scenarios, it is also an excellent read from cover to cover!

The book starts with a brief introduction of governing equations and basic
stability/instability, linear/nonlinear temporal/spatial concepts. Whereas the first part
of the book (Chapters 2–5, about one third of the total) is focused on fundamental
concepts of hydrodynamic (mostly temporal) stability theory, richly exemplified using
simple parallel shear flows, the second part (Chapters 6–9) builds on these results and
is devoted to more realistic, and hence more complex, situations such as three-
dimensional boundary layers, spatially evolving flows, secondary intabilities and
transition.

Chapter 2 is concerned with linear inviscid analysis, and illustrates the fundamental
tools and results that are prerequisites for any serious shear flow analysis: modal
solutions, Rayleigh’s and Fjørtoft’s criteria, the method of stationary phase, Laplace’s
transform. While linear dispersion relations and the associated eigenfunctions can be
found in any standard textbook, particularly illuminating here is the explicit treatment
and the corresponding illustrations of the evolution of a point-like disturbance in a
boundary layer.

In Chapter 3 the stability analysis of two-dimensional parallel shear flows is carried
a step further by keeping viscous terms, solving the resulting Orr–Sommerfeld and
Squire equations and explicitly obtaining the spectra and eigenfunctions for Couette,
pipe and Blasius boundary layer flows. In the limit of large Reynolds numbers,
asymptotic techniques and critical layers are also briefly mentioned. Particularly
helpful is the discussion of the sensitivity of numerically computed eigenvalues and
its relationship to pseudospectra.

Chapter 4 further analyses linear viscous temporal instability with emphasis on the
initial value problem rather than on the eigenvalue problem. In the first part of the
book, this is certainly this reviewer’s favourite chapter: topics such as non-normal
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operators, transient growth, optimal growth, and optimal disturbances are covered in
great detail, illustrated by numerous examples drawn from the authors’ own work.

The first part concludes with Chapter 5 on nonlinear stability of which, obviously, no
general theory exists. Besides classical techniques such as weakly nonlinear expansions,
wave interactions and bifurcation analysis, the chapter includes an enlightening
discussion on nonlinear equilibrium solutions and provides a numerical strategy
to compute them.

The second part of the book starts with Chapter 6 on the Falkner–Skan(–Cooke)
velocity profiles: the drosophila of boundary layers with pressure gradient and
crossflow. Then additional features due to body forces (related to system rotation
or streamline curvature), surface tension or compressibility are analysed with the
tools of the first part. In contrast, the section on unsteady flows introduces particular
techniques to investigate stability of basic flows that are periodic in time or even
display arbitrary time dependence.

After the so far very detailed coverage of many aspects of temporal stability,
Chapter 7 now addresses growth of disturbances in space. This chapter, totalling 120
pages, is certainly the core of the book – besides being my favourite. By resorting
to several model problems before addressing the full Navier–Stokes equations, the
authors emphasize the particular difficulties associated with the spatial setting. Indeed,
it is too often believed that temporal results can always be converted to spatial ones by
a simple transformation. One may hope that the two pages on Gaster’s transformation,
clearly delimiting the validity of this method, will put an end to its erroneous use. Then,
the evolution of perturbations in both space and time is addressed by introducing
the concept of convective and absolute instabilities: features which are of primary
importance to any non-Galilean-invariant open shear flow. After a review of the
classical Briggs’ method and the more practical cusp map procedure, these concepts
are illustrated by considering the two-dimensional wake behind a cylinder and the
three-dimensional boundary layer due to a rotating disk: two situations where much
understanding has been gained by absolute instability analyses. The chapter continues
with a treatment of the spatial initial value problem and the associated discussion
of upstream and downstream responses to localized harmonic forcing. The authors
then incorporate non-parallel effects, which are nearly always present in realistic
shear flows, first by asymptotic multiple-scales analyses and then by parabolized
stability equations, exemplified by Görtler vortices and the Blasius boundary layer
(the extremely brief presentation of the obscure triple-deck theory is however not
very illuminating). Then follows the spatial analogue of optimal disturbances and a
brief review of global instability results, as derived from local stability analysis within
the assumption of weakly diverging flows. The chapter closes with the receptivity
problem, putting into practice some of the tools introduced above.

Chapter 8 brings us a step closer to transition by studying secondary instabilities
that may, in turn, affect a finite-amplitude state resulting from a primary instability.
The mathematical tool of choice is here Floquet theory, now usable in realistic
situations due to the recently available computing power. The various types of
secondary instabilities are discussed for Tollmien–Schlichting waves, streaks, Görtler
and crossflow vortices, and the special case of Eckhaus instability.

The concluding Chapter 9 is based on the results and techniques collected in the
previous chapters and considers how the various instability mechanisms can trigger
transition to a turbulent regime. In contrast with the rest of the book, very few
equations are introduced: the emphasis here is not on mathematical analysis but
on describing the many possible routes that the complicated transition process may
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follow. This final chapter appears to be a quite comprehensive review (besides being an
excellent read) of transition scenarios prevailing for two-dimensional waves, streaks,
separation bubbles, Dean, Görtler and crossflow vortices etc. The chapter closes with
a brief account of different models that have been used, more or less successfully, to
predict transition.

On the technical side, one could criticise many overlarge or extremely small figure
labels, several very badly placed equations (e.g. p. 238) and some inconsistencies in the
layout. But rather than the authors, the publisher is to blame: its only contribution
to this work being a photocomposed copy prepared from the authors’ TEX files.

All in all, within its field, this is an extremely complete and well documented book –
one which will be wanted in the library by all and on the desk (not on the shelf) by
many.

Benoı̂t Pier

The Field Theoretic Renormalization Group in Fully Developed Turbulence. By
L. Ts. Adzhemyan, N. V. Antonov & A. N. Vasiliev. Gordon & Breach, 1999.
208 pp. ISBN 9056 99145 0. £62.
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Since the pioneering work of Kraichnan, Wyld, Edwards and Herring, more than
four decades ago, the idea that the statistical theory of macroscopic fluid turbulence
can be formulated as a version of quantum field theory has been well established.
In particular, the concept of renormalization has taken root, just as it has in various
branches of condensed matter physics where the many-body problem is the prime
consideration.

However, although this analogy can be a productive one, at the same time
it is essential to bear in mind the differences between turbulence (macroscopic,
deterministic, classical, dissipative) on the one hand, and field theory (microscopic,
random, quantum, conservative) on the other. Probably the most important of
these differences is that turbulence is far from equilibrium and a turbulent fluid is
characterized by a flux of energy through its internal degrees of freedom. This is the
energy cascade which, although conservative, is an essential element in the dissipation
process. In fact it is a controlling symmetry which determines the power-law behaviour
of the energy spectrum (although perhaps not that of the higher moments). There is
simply no analogue of this behaviour in quantum field theory; nor in its semi-classical
extension to the theory of static critical phenomena. In these equilibrium problems
dimensional analysis can tell one very little and power laws are controlled by the
scaling dimension under renormalization group (RG) transformation.

The early work on renormalization, as applied to the turbulence closure problem,
took full account of these differences. However, following the success of RG in the
theory of critical phenomena, there was a growing number of papers from the late
1970s onwards, in which the authors seemed to take a cavalier attitude to such
differences. This led to various writers making extravagant claims for the relevance
of their work to the notorious turbulence problem. This particular activity was the
subject of much controversy over the decade from the mid-1980s to the mid-1990s
and, although it drew the subject of renormalization to the attention of the wider
turbulence community, it undoubtedly caused harm.

The outcome seems to be that it is almost impossible nowadays to obtain a fair
hearing in the turbulence community for any proposal to use RG. Indeed, it is within
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my experience that a paper submitted to a leading journal can be turned down unread
because it contained the dreaded acronym RG in its title!

By this stage it will be clear that I approached the book that is the subject of
this review with some degree of caution. However, I was pleasantly surprised to find
that it was well written, clearly argued, well balanced, and showed an intelligent
appreciation of fluid turbulence, as well as an obviously profound understanding of
quantum field theory. Taken on its own terms, it qualifies as a good book, albeit open
to some criticism. The main problem for me lies in the title: one would not describe
work on (say) the Ising model as a theory of ferromagnetism. In the same way, I
think that the use of the word turbulence in the title is unhelpful and this is only
aggravated by the qualification fully developed.

The topic area that is the subject of this book depends on two seminal pieces of
work. These are: the application of RG to stirred fluid motion by Forster, Nelson &
Stephen (1976); and the field-theoretic formalism of turbulence by Martin, Siggia &
Rose (1973).

The first of these extended the RG algorithm (as used in dynamical critical
phenomena) to fluid motion subject to a random stirring force. We summarize
this as follows. Consider the Fourier modes of the velocity field u(k, t), defined on the
wavenumber interval 0 � k � k0, and filtered such that u = u< for 0 � k � k1 and u =
u> for k1 � k � k0, where k1 = b−1 � k0 and b � 1 is the spatial rescaling factor. The
algorithm then consists of two steps:

1. Solve the Navier–Stokes equation (NSE) on k1 � k � k0. Substitute that solution
for the mean effect of the high-k modes into the NSE on 0 � k � k1. This results in
an increment to the viscosity: ν0 → ν1 = ν0 + δν0.

2. Rescale the basic variables so that the NSE on 0 � k � k1 looks like the original
NSE on 0 � k � k0.

These steps are repeated until a fixed point is reached and this defines the
renormalized viscosity.

The basic problem is the difficulty of carrying out Stage 1. The only general method
available to us relies on perturbation theory; and, in the context of the NSE, that
means an expansion in powers of the Reynolds number, which is normally large. This
is where RG comes into its own. The local Reynolds number R(k1) = [E(k1)]

1/2/ν0k
1/2
1 ,

where ν0 is the (unrenormalized) kinematic viscosity of the fluid, can be made as small
as one pleases by going to either very small or very large wavenumbers. The situation
is illustrated in figure 1. Forster et al. chose to study the low-wavenumber case (with k0

chosen low enough to exclude the energy cascade), where one may evaluate coefficients
in a perturbation series as Gaussian averages. Here the fixed point corresponds to
some form of universal behaviour in the limit as k → 0. In contrast, a theory of
turbulence would involve elimination of bands of modes in the dissipation range, with
the fixed point corresponding to the upper end of the inertial range. The basic difficulty
in this case is the need for a non-trivial conditional average. Apparently the only
work addressing this problem is the method of iterative averaging (see McComb &
Johnston 2001 and references therein).

RG in quantum field theory is not the same as the above. It relies on the
concept of renormalization invariance which in turn relies on the fact that the
bare mass m0 of a particle is not an observable. It is the renormalized mass m

which is observable. In macroscopic fluid motion things are the other way round.
The analogous renormalizable quantity is the kinematic viscosity ν0 but this is an
observable and it is the renormalized viscosity which is not observable. Nevertheless,
the above recursive procedure permits one to derive RG equations and these, when
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Figure 1. RG iterations at both low and high wavenumbers: in each case the fixed point is
indicated schematically by an asterisk on the k-axis.

combined with the formalism of Martin et al., allow the authors to set up a field-
theoretic formalism for the stochastic NSE, and indeed to convert the work of others
into the same unified format.

At 200 pages, the book is short and consists of only three chapters, preceded by a
brief introduction and followed by an even briefer afterword. The introduction gives
a concise but good summary of the history of RG, first in quantum field theory and
then in the theory of critical phenomena. The authors point out that RG in turbulence
has had a longer and less happy history (although they appear to be interpreting
Kolmogorov (1941) as the beginning of this type of approach) and that most of the
actual RG work has been done after the ‘Golden Age’ of its application to critical
phenomena.

In Chapter 1, they set up their field-theoretic formalism and this is done in quite an
uncompromising way. For instance, a length-scale cutoff in the noise autocorrelation
is changed to a mass, as this would be the equivalent in quantum field theory. At this
point (and thereafter) one wonders who do they envisage as their readership? Even
the most theoretical of fluid dynamicists will find this counter-intuitive. As a result,
one needs to be more than just familiar with field theory or this book is going to be
very hard work.

Chapter 2 extends the analysis to composite operators, which are clearly and
succinctly defined as ‘any monomial or polynomial constructed from the fields or
their derivatives at a single point’. In my experience, books on field theory and
condensed matter theory generally leave you to work this out for yourself. This
chapter claims to provide a theoretical basis for the second Kolmogorov hypothesis
and also sheds light on the Yakhot–Orszag theory of the 1980s. Chapter 3 extends
the analysis to applications and all the usual suspects from passive scalar convection
through anisotropic turbulence to plasmas can be found here.

The formalism (for anyone with a taste for quantum field theory) is elegant, and
the discussion at many points is intriguing. Perhaps this work has a contribution to
make to turbulence theory but one does very much wonder about the relevance to real
turbulence at this stage in its development. The key issue is that the entire theory rests
on the arbitrarily chosen autocorrelation of stirring forces dF (k). If the zero-order
correlation of velocities is represented by Q0(k) = G0(k)dF (k), where G0(k) is the
viscous Green’s function, this is simply not an observable and all the talk of UV and
IR divergences is very misleading as, unlike in field theory, they are not inherent in the
formulation but only reflect a pathological choice (albeit subject to some constraints)
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of dF (k). Of course renormalization leads to some Q(k) = G(k)dF (k), but everything
we know about the physics of turbulence (including the earlier renormalization work)
suggests that a viscous renormalization G0(k) → G(k), cannot be the whole story.
It is an article of faith in turbulence that Q(k) in the inertial and viscous ranges of
wavenumbers is independent of the choice of dF (k).

From comments made early on, and in their afterword, the authors are aware of
this weakness in their position. Also, in the last paragraph of their introduction, they
mention the method of iterative averaging and describe it as ‘close in spirit to the
Wilson form of the RG’. They mention it again in their afterword, but it does not
appear in the text. This seems to me to be an opportunity missed. Some attempt to
reconcile iterative averaging with the work they do discuss (which is valid only in the
limit k → 0: see figure 1) could have been enlightening.

To sum up, this book is well written and (with the exception of the deplorably
inadequate index) well produced. It reports an activity which at a conservative estimate
must have resulted in about 100 papers over two decades. Probably no other area of
turbulence theory can claim such a sustained level of activity: it cannot therefore be
ignored. If you are fluent in ‘quantum field theory’ you will enjoy it.
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